91944842
Everyday life, daily life or routine life comprises the ways in which people typically act, think, and feel on a daily basis. Everyday life may be described as mundane, routine, natural, habitual, or normal.
Human diurnality means most people sleep at least part of the night and are active in daytime. Most eat two or three meals in a day.
Working time (apart from shift work) mostly involves a daily schedule, beginning in the morning. This produces the daily rush hours experienced by many millions, and the drive time focused on by radio broadcasters.
Evening is often leisure time. Bathing every day is a custom for many. Beyond these broad similarities, lifestyles vary and different people spend their days differently.
For example, nomadic life differs from sedentism, and among the sedentary, urban people live differently from rural folk. Differences in the lives of the rich and the poor, or between laborers and intellectuals, may go beyond their working hours. Children and adults also vary in what they do each day.
Is there a way to look life different? can you ignore what is hapening around you? can you just simply “do not care” about everything and anything? can you freeze your feelings or emotions and get on with the day ?
The oldest image of a star pattern, the constellation of Orion, has been recognised on a piece of mammoth tusk some 32,500 years old.
The constellation Orion is symbolized by a man standing with his right arm raised and a sword at his belt and can be seen throughout the world at different times of the year. Orion was the sun god of the Egyptians and Phonecians and called the ‘strong one’ by the Arabs.
In parts of Africa, his belt and sword are known as ‘three dogs chasing three pigs’ and the Borana people of East Africa based a sophisticated calendar on observations of star clusters near Orion’s belt.
Orion contains some of the brightest stars in the southern part of the winter sky in the northern hemisphere and can be seen later in the southern hemisphere.
Babylonian records of observations of heavenly events date back to 1,600 BCE. The reason for adopting their arithmetic system is probably because 60 has many divisors, and their decision to adopt 360 days as the length of the year and 3600 in a circle was based on their existing mathematics and the convenience that the sun moves through the sky relative to fixed stars at about 1degree each day.
The constellation Taurus, the bull, a symbol of strength and fertility, figures prominently in the mythology of nearly all early civilizations, from Babylon and India to northern Europe.
The Assyrian winged man-headed bull had the strength of a bull, the swiftness of a bird and human intelligence.
From about 700 BCE the Babylonians began to develop a mathematical theory of astronomy, but the equally divided 12-constellation zodiac appears later about 500 BCE to correspond to their year of 12 months of 30 days each.
Their base 60 fraction system which we still use today (degrees / hours, minutes and seconds) was much easier to calculate with than the fractions used in Egypt
or Greece, and remained the main calculation tool for astronomers until after the 16th century, when decimal notation began to take over.
Hours did not have a fixed length until the Greeks decided they needed such a system for theoretical calculations. Hipparchus proposed dividing the day equally into 24 hours which came to be known as equinoctial hours.
They are based on 12 hours of daylight and 12 hours of darkness on the days of the Equinoxes. However, ordinary people continued to use seasonally varying hours for a long time. Only with the advent of mechanical clocks in Europe in the 14th Century, did the system we use today become commonly accepted.
Mechanical clocks replaced the old water clocks, and the first clock escapement mechanism appears to have been invented in 1275.
The first drawing of an escapement was given by Jacopo di Dondi in 1364. In the early-to-mid-14th century, large mechanical clocks began to appear in the towers of several cities.
There is no evidence or record of the working models of these public clocks that were weight-driven. All had the same basic problem: the period of oscillation of the mechanism depended heavily on the driving force of the weights and the friction in the drive.
In later Mediaeval times elaborate clocks were built in public places. This is the Astronomical clock in Prague, parts of which date from about 1410.
The earliest surviving spring driven clock can be found in the science museum in London and dates from about 1450.
Replacing the heavy drive weights with a spring permitted smaller and portable clocks and watches.
Up to about 1,900 BCE the Celestial Pole was Thuban a star in the ‘tail’ of the constellation Draco. By 1,000 BCE it was Thuban in the constellation Ursa Minor. Today Polaris is the last star in the ‘tail’ of Ursa Minor.
Note 2
‘Sun time’ and ‘clock time’ are different. Sun time is based on the fact that the sun reaches its highest point (the meridian), in the middle of the day, and on the next day at its highest point, it will have completed a full cycle. However, the time between the sun reaching successive meridians is often different from clock time. According to clock time, from May to August, the day is close to 24 hours, but in late October the days are about 15 minutes shorter, while in mid February the days are about 14 minutes longer. For our daily routines, it is important to have a constant ‘clock time’ of 24 hours. This variation is called the ‘Equation of Time’ and shows the relationship between sun time and clock time. The variation has two causes; the plane of the Earth’s equator is inclined to the Earth’s orbit around the Sun, and the orbit of the Earth around the sun is an ellipse and not a circle. The National Maritime Museum website shows two separate graphs for these causes, and a third graph where they are combined to give the full correction.
Everyday life, daily life or routine life comprises the ways in which people typically act, think, and feel on a daily basis.
Everyday life may be described as mundane, routine, natural, habitual, or normal.
Ever since humans first noticed the regular movement of the Sun and the stars, we have wondered about the passage of time.
Prehistoric people first recorded the phases of the Moon some 30,000 years ago, and recording time has been a way by which humanity has observed the heavens and represented the progress of civilization
The earliest natural events to be recognised were in the heavens, but during the course of the year there were many other events that indicated significant changes in the environment.
Seasonal winds and rains, the flooding of rivers, the flowering of trees and plants, and the breeding cycles or migration of animals and birds, all led to natural divisions of the year, and further observation and local customs led to the recognition of the seasons
The earliest archaeological evidence of Chinese calendars appears about 2,000 BCE. They show a 12 month year with the occasional occurrence of a 13th month.
However, traditional Chinese records suggest the origin of a calendar of 366 days depending on the movements of the Sun and the Moon as early as 3,000 BCE. Over such a long period of observation,
Chinese astronomers became aware that their calendar was not accurate, and by the second century CE it was recognised that the calendar became unreliable every 300 years
. This problem is called Precession and was recorded by Chinese historians in the fourth and fifth centuries CE.
In the fifth century CE the scholar Zu Chongzi created the first calendar which took precession into account, and the most comprehensive calendar was the Dayan Calendar compiled in the Tang Dynasty (616-907 CE) well ahead of any such development in Europe.
In the Mediterranean, Hipparchus made the earliest calculations of precession in about 160 BCE. The problem was taken up by astronomers in the Middle East and India who recognized that precession gradually altered the length of the year.
Calendars have had to be altered regularly. In 325 CE the spring (vernal) equinox had moved to March 21.
The Emperor Constantine established dates for the Christian holidays, but Easter is based on the date of the vernal equinox which varies every year because the equinox is an astronomical event.
By 1582 the vernal equinox had moved another ten days and Pope Gregory established a new calendar, and this change is the reason for having an extra day in every leap year.
However, there are still small changes accumulating, and one day we shall have to adopt a new calendar!
As the technology of glass-blowing developed, from some time in the 14th century it became possible to make sandglasses.
Originally, sandglasses were used as a measure for periods of time like the lamps or candles,
but as clocks became more accurate they were used to calibrate sandglasses to measure specific periods of time, and to determine the duration of sermons, university lectures, and even periods of torture.
There are various theories about how the 24 hour day developed. The fact that the day was divided into 12 hours might be because 12 is a factor of 60, and both the Babylonian and Egyptian
‘civilisations recognised a zodiac cycle of 12 constellations. On the other hand, (excuse the pun) finger-counting with base 12 was a possibility.
The fingers each have 3 joints, and so counting on the joints gives one ‘full hand’ of 12.
In classical Greek and Roman times they used twelve hours from sunrise to sunset; but since summer days and winter nights are longer than winter days and summer nights, the lengths of the hours varied throughout the year.
In about 50 BCE Andronikos of Kyrrhestes, built the Tower of Winds in Athens.
This was a water clock combined with Sundials positioned in the eight principal wind directions. By then it was the most accurate device built for keeping time.
Christiaan Huygens made the first pendulum clock, regulated by a mechanism with a “natural” period of oscillation in 1656. Galileo studied pendulum motion as early as 1582, but his design for a clock was not built before his death. Huygens’ pendulum clock had an error of less than 1 minute a day, and his later refinements reduced his clock’s errors to less than 10 seconds a day. There was no device for keeping accurate time at sea until John Harrison, a carpenter and instrument maker, refined techniques for temperature compensation and found new ways of reducing friction. By 1761, he had built a marine chronometer with a spring and balance wheel escapement that kept very accurate time. With the final version of his chronometer, which looked like a large pocket watch, he achieved a means of determining longitude to within one-half a degree. It was not until 1884 that a conference at Greenwich reached agreement on global time measurement and adopted Greenwich Mean Time as the international standard. Today we rely on atomic clocks for our most accurate time measurements. |